GARISSA UNIVERSITY
UNIVERSITY EXAMINATION $2017 / 2018$ ACADEMIC YEAR ONE SECOND SEMESTER EXAMINATION

SCHOOL OF BUSINESS AND ECONOMICS

FOR THE DEGREE OF BACHELOR OF BUSINESS MANAGEMENT

COURSE CODE: ECO 113
COURSE TITLE: INTRODUCTION TO MATHEMATICS II

EXAMINATION DURATION: 3 HOURS

DATE: 11/04/18 TIME: 9.00-12.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

QUESTION ONE (COMPULSORY)

a) If $f(x)=5^{2 x+2 x}$, find all the values of x such that $f(x)=125$
b) The table below shows the values of function $f(x)$ at different points of x.

x	-1	0	1	2	3
$f(x)$	$3 / 2$	3	6	12	24

i. Giving a reason, state whether function is an exponential or not.
ii. If $f(x)$ is an exponential function, find an exponential function that models the data.
c) A manufacturer estimates that when x units of a particular commodity are produced, they can all be sold when the market price is \boldsymbol{p} dollars per unit, where \boldsymbol{p} is given by the demand function $P=$ $200 e^{0.01 x}$
i. Write down expressions for the total revenue (TR) function
ii. How much revenue is obtained when 100 units of the commodity are produce
d) Find the range and the horizontal asymptote $f(x)=1-2^{x+3}$
e) Given that matrix $A=\left(\begin{array}{ccc}-0.5 & 0.75 & 0.75 \\ 1 & -1.5 & -0.5 \\ 0.5 & -0.25 & -0.25\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & -1 & 2 \\ 2 & 1 & 0\end{array}\right)$

Show that $B=A^{-1}$
[2 marks]
f) Use the Gauss-Jordan method to find the inverse of matrix below:

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & -1 & 1 \\
3 & 2 & 1
\end{array}\right)
$$

[6 marks]

g) The marginal revenue of a function is given by $M R=25-8 Q+6 Q^{2}+4 Q^{3}$

Find the revenue function

QUESTION TWO

(a) A function $f(x)$ is defined by $f(x)=\frac{x}{x^{2}+1}$. Determine the intervals for which the function $f(x)$ is increasing or decreasing.
(b) Find the local maximum and the local minimum of the function

$$
f(x)=2 x^{3}-21 x^{2}+36 x-20
$$

(c) Find the area bounded by the curve $y=x^{2}$, the x -axis and the lines $x=2$, and $x=5$.

QUESTION THREE

(a) Between 9:00 PM and 10:00 PM, cars arrive at Burger King's drive-thru at the rate of 12 cars per hour (0.2 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within \boldsymbol{t} minutes of 9:00 PM .

$$
F(t)=1-e^{-0.2 t}
$$

Determine the probability that a car will arrive within 30 minutes of 9 PM.
What value does \boldsymbol{F} approach as \boldsymbol{t} increases without bound in the positive direction?
(b) Solve the equation

$$
2 \log _{9}(\sqrt{x})-\log _{9}(6 x-1)=0
$$

(c) Find all the real numbers x that satisfy the given equation.

$$
\left(\frac{1}{9}\right)^{1-3 x}=3^{4 x}
$$

(d) Find the domain and the vertical asymptote of asymptote $f(x)=\ln \frac{1}{x-5}$

QUESTION FOUR

Three persons A, B and C possess Sh. 3000, Sh. 2000 and Sh. 2500 respectively. Person A with his entire amount purchased 5 shares of Sh. X each, 3 shares of Sh. Y each and 4 shares of Sh . Z each. Person B purchased 3 shares of Sh. X each, 4 shares of Sh. Y each and 2 shares of Sh. Z each with his entire amount and person C purchased 4 shares of Sh. X each, 3 shares of Sh. Y each and 4 shares of Sh. Z each with his entire amount. Determine the value of each share of different type.
[15 marks]

QUESTION FIVE

(a) Find the determinant of the matrix below.

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 7 \\
2 & 1 & -1
\end{array}\right)
$$

(b) Solve the following system of equations by using Cramer's Rule.

$$
\begin{gathered}
x+y+z=9 \\
2 x+5 y+7 z=52 \\
2 x+y-z=0
\end{gathered}
$$

QUESTION SIX

(a) Given the demand function $P=20-3 Q$. Determine the revenue function and the marginal revenue function.
(b) A newly created state welfare agency wants to determine the number of analysts to hire to process the welfare application. Efficiency experts estimate the average cost C of processing an application is a function of the number of analyst (x). Specifically, the cost function is given by:

$$
C=0.001 x^{2}-5 \ln x+60
$$

Determine the number of analysts who should be hired in order to minimize the average cost per application. Show that the value obtained minimizes the cost.
(c) The demand function is given by $P=\frac{55}{\sqrt{Q}}$ and the cost of producing Q units is given by the function $C=0.4 Q+700$. Find the price per unit (P) that gives the maximum profit

